Beda pcb HP dan Elektnic Biasa
Seperti apa PWB Ponsel dan apa perbedaannya dengan PCB elektronika umumnya?
PWB singkatan dari “printed wired board”, PWB merupakan papan yang terbuat dari fiber glass yang didalamnya terdapat kawat penghantar untuk menghubungkan sekian banyak komponen yang akan dijadikan suatu rangkaian yang di intergrasikan dalam satu modul. PWB dan PCB hampir sama fungsi dan jenisnya, PCB singkatan dari “Printed Circuit Board”, PCB biasanya hanya mempunyai 1 sampai dua lapisan jalur yang ditempatkan pada permukaan depan dan belakang. Berbeda dengan PWB ponsel yang mempunyai banyak lapisan jalur, bahkan bisa lebih dari 8 lapisan jalur yang disusun sedemikian rupa. Tentunya dapat anda bayangkan suatu mesin ponsel dengan begitu banyaknya komponen bahkan sangat kecil ukurannya harus terhubung antara satu komponen dengan yang lainnya dijadikan satu rangkaian yang terintergrasi dalam satu modul, padahal PWB Ponsel sangat kecil dan dibatasi ukurannya. Agar ukuran ponsel tidak menjadi besar, dibutuhkan jalur yang bukan hanya 1-2 lapisan melainkan sampai 8 lapisan bahkan lebih, agar jalur-jalur tersebut tidak membutuhkan lahan (area) yang sangat luas.
Kerusakan PWB
1. Korosi sering menjadi penyebab utama dari kerusakan PWB, jalur-jalur PWB sangat kecil dan tipis, akibat korosi jalur menjadi terbutus,
2. Konsleting, hubung singkat secara elektronis bisa mengakibatkan jalur putus, sama halnya dengan sebuah sikring, bila arus listrik yang melewati kawat/jalur melebihi dari kapasitasnya maka jalur tersebut akan terbakar bahkan putus,
3. Benturan keras sering kali terjadi akibat ponsel jatuh atau terlempar keras bisa mengakibatkan PWB menjadi bengkok, jalur-jalur yang terdapat di lapisan tengah sangat rentan sekali terhadap tekukan,
4. Ceroboh atau kesalahan dalam melakukan penyolderan yang mengakibatkan terminal-terminal jalur terputus,
5. Penggunaan Solder atau Hotair terlalu panas atau melebihi batas suhu yang dianjurkan.
Seperti apa PWB Ponsel dan apa perbedaannya dengan PCB elektronika umumnya?
PWB singkatan dari “printed wired board”, PWB merupakan papan yang terbuat dari fiber glass yang didalamnya terdapat kawat penghantar untuk menghubungkan sekian banyak komponen yang akan dijadikan suatu rangkaian yang di intergrasikan dalam satu modul. PWB dan PCB hampir sama fungsi dan jenisnya, PCB singkatan dari “Printed Circuit Board”, PCB biasanya hanya mempunyai 1 sampai dua lapisan jalur yang ditempatkan pada permukaan depan dan belakang. Berbeda dengan PWB ponsel yang mempunyai banyak lapisan jalur, bahkan bisa lebih dari 8 lapisan jalur yang disusun sedemikian rupa. Tentunya dapat anda bayangkan suatu mesin ponsel dengan begitu banyaknya komponen bahkan sangat kecil ukurannya harus terhubung antara satu komponen dengan yang lainnya dijadikan satu rangkaian yang terintergrasi dalam satu modul, padahal PWB Ponsel sangat kecil dan dibatasi ukurannya. Agar ukuran ponsel tidak menjadi besar, dibutuhkan jalur yang bukan hanya 1-2 lapisan melainkan sampai 8 lapisan bahkan lebih, agar jalur-jalur tersebut tidak membutuhkan lahan (area) yang sangat luas.
Kerusakan PWB
1. Korosi sering menjadi penyebab utama dari kerusakan PWB, jalur-jalur PWB sangat kecil dan tipis, akibat korosi jalur menjadi terbutus,
2. Konsleting, hubung singkat secara elektronis bisa mengakibatkan jalur putus, sama halnya dengan sebuah sikring, bila arus listrik yang melewati kawat/jalur melebihi dari kapasitasnya maka jalur tersebut akan terbakar bahkan putus,
3. Benturan keras sering kali terjadi akibat ponsel jatuh atau terlempar keras bisa mengakibatkan PWB menjadi bengkok, jalur-jalur yang terdapat di lapisan tengah sangat rentan sekali terhadap tekukan,
4. Ceroboh atau kesalahan dalam melakukan penyolderan yang mengakibatkan terminal-terminal jalur terputus,
5. Penggunaan Solder atau Hotair terlalu panas atau melebihi batas suhu yang dianjurkan.
cara melakukan pengukuran
Menggunakan Multitester sebagai Volt Meter
1. Pasang Kabel hitam ke COM (Ground), dan pasang Kabel Merah ke Lubang paling kanan (V/Ohm).
2. Tentukan object pengukuran, misalnya akan mengukur battere Nokia yg berkapasitas 3,7V.
3. Lihat skala pada Multitester pd bagian V (Volt) ada dua yaitu:
DC Volt -- (Tegangan searah) : Tegangan Batere, Teg. Output IC Power, dsb (Terdapat Polaritas + dan -)
AC Volt ~ (Tegangan Bolak Balik) : Tegangan PLN, dan sejenisnya.
Umumnya yg digunakan dalam pengukuran arus lemah seperti pengukuran ponsel, dll dipilih yg DC Volt --
Setelah dipilih skala DC Volt, ada nilai2 yg tertera pada bagian DC Volt tsb. Contoh:
200mV artinya akan mengukur tegangan yg maximal 0,2 Volt
2V artinya akan mengukur tegangan yg maximal 2 Volt
20V artinya akan mengukur tegangan yg maximal 20 Volt
200V artinya akan mengukur tegangan yg maximal 200V
750V artinya akan mengukur tegangan yg maximal 750V
Gunakan skala yg tepat utk pengukuran, misal Battere 3,6 Volt gunakan skala pada 20V. Maka hasilnya akan akurat mis terbaca : 3,76 Volt.
Jika menggunakan skala 2 V akan muncul angka 1 (pertanda overload/ melebihi skala)
Jika menggunakan skala 200V akan terbaca hasilnya namun tdk akurat mis terbaca : 3,6V atau 3,7 V sja (1digit belakang koma)
Jika menggunakan 750V bisa saja namun hasilnya kaan terbaca 3 atau 4 volt (Dibulatkan lsg tanpa koma)
Setelah object pengukuran sdh ada, dan skala sdh dipilih yg tepat, maka lakukan pengukuran dgn menempelkan kbl merah ke positif battere dan kabel hitam ke negatif batere. Akan muncul hasil pengukurannya.
Jika kabel terbalik hasilnya akan tetap muncul, namun ada tanda negatif didepan hasilnya. Beda dgn Multitester Analog. Jika kbl terbalik jarum akan mentok kekiri.
NB : jika Multitester ada tombol DH, artinya Data Hold. Jika ditekan maka hasilnya akan freeze, dan bisa dicatat hasilnya.
Menggunakan Multitester sebagai Volt Meter
1. Perhatikan Object yg akan diukur. (Resistor, hambatan jalur, dll)
2. Perhatikan skala Pengukuran pada Ohm Meter
200 artinya akan mengukur hambatan yg nilainya max. 200 Ohm
2K artinya akan mengukur hambatan yg nilainya max. 2000 Ohm (2KOhm)
20 K artinya akanmengukur hambatan yg nilainya max. 20.000 Ohm (20K Ohm)
200K artinya akan mengukur hambatan yg nilainya max. 200.000 Ohm (200K Ohm)
2M artinya akan menguur hambatan yg nilainya 2.000.000 Ohm (2000K Ohm atau 2 Mega Ohm)
Bila tdk tau besaran nilai yg mau diukur, dianjurkan pilih skala tengah misalnya skala 20K. Lalu lakukan pengukuran.
Jika hasilnya 1 (Overload) maka naikkan skala
Jika hasilnya digit dibelakang koma kurang akurat, maka turunkan skala.
Contoh pembacaan hasil :
Pd skala 2K hasilnya 1,76 itu artinya hambatan yg terukur adalah 1,76 K Ohm
Pd skala 2K hasilnya 0,378 itu artinya hambatan yg terukur adalah 0,378 K Ohm alias 378 Ohm. (KOhm ke Ohm dikali 1000)
Pd skala 20K hasilnya 1 , artinya object yg mau diukur melebihi skala 20K,maka naikan skala menjadi 200K, hasilnya menjadi 38,78 itu artinya hambatan yg terukur adalah sebesar 38,78 KOhm
Pada pengukuran tegangan PLN, maka skala dipindahkan ke bagian AC Volt (~) lalu skala ke 750 V.
Colok kabel merah dan hitam ke masing2 lobang stop kontak, bolak balik boleh. Namun hati2 takut ada kabel yg terkelupas, bisa tersengat listrik.
Hasil yg akan muncul mis: 216 artinya tegangan PLN tsb sebesar 216 Volt.
Jika memakai skala 200, maka hasilnya akan 1 pertanda over load alias melebihi skala 200 Volt tsb.
Menggunakan Multitester sebagai Volt Meter
1. Pasang Kabel hitam ke COM (Ground), dan pasang Kabel Merah ke Lubang paling kanan (V/Ohm).
2. Tentukan object pengukuran, misalnya akan mengukur battere Nokia yg berkapasitas 3,7V.
3. Lihat skala pada Multitester pd bagian V (Volt) ada dua yaitu:
DC Volt -- (Tegangan searah) : Tegangan Batere, Teg. Output IC Power, dsb (Terdapat Polaritas + dan -)
AC Volt ~ (Tegangan Bolak Balik) : Tegangan PLN, dan sejenisnya.
Umumnya yg digunakan dalam pengukuran arus lemah seperti pengukuran ponsel, dll dipilih yg DC Volt --
Setelah dipilih skala DC Volt, ada nilai2 yg tertera pada bagian DC Volt tsb. Contoh:
200mV artinya akan mengukur tegangan yg maximal 0,2 Volt
2V artinya akan mengukur tegangan yg maximal 2 Volt
20V artinya akan mengukur tegangan yg maximal 20 Volt
200V artinya akan mengukur tegangan yg maximal 200V
750V artinya akan mengukur tegangan yg maximal 750V
Gunakan skala yg tepat utk pengukuran, misal Battere 3,6 Volt gunakan skala pada 20V. Maka hasilnya akan akurat mis terbaca : 3,76 Volt.
Jika menggunakan skala 2 V akan muncul angka 1 (pertanda overload/ melebihi skala)
Jika menggunakan skala 200V akan terbaca hasilnya namun tdk akurat mis terbaca : 3,6V atau 3,7 V sja (1digit belakang koma)
Jika menggunakan 750V bisa saja namun hasilnya kaan terbaca 3 atau 4 volt (Dibulatkan lsg tanpa koma)
Setelah object pengukuran sdh ada, dan skala sdh dipilih yg tepat, maka lakukan pengukuran dgn menempelkan kbl merah ke positif battere dan kabel hitam ke negatif batere. Akan muncul hasil pengukurannya.
Jika kabel terbalik hasilnya akan tetap muncul, namun ada tanda negatif didepan hasilnya. Beda dgn Multitester Analog. Jika kbl terbalik jarum akan mentok kekiri.
NB : jika Multitester ada tombol DH, artinya Data Hold. Jika ditekan maka hasilnya akan freeze, dan bisa dicatat hasilnya.
Menggunakan Multitester sebagai Volt Meter
1. Perhatikan Object yg akan diukur. (Resistor, hambatan jalur, dll)
2. Perhatikan skala Pengukuran pada Ohm Meter
200 artinya akan mengukur hambatan yg nilainya max. 200 Ohm
2K artinya akan mengukur hambatan yg nilainya max. 2000 Ohm (2KOhm)
20 K artinya akanmengukur hambatan yg nilainya max. 20.000 Ohm (20K Ohm)
200K artinya akan mengukur hambatan yg nilainya max. 200.000 Ohm (200K Ohm)
2M artinya akan menguur hambatan yg nilainya 2.000.000 Ohm (2000K Ohm atau 2 Mega Ohm)
Bila tdk tau besaran nilai yg mau diukur, dianjurkan pilih skala tengah misalnya skala 20K. Lalu lakukan pengukuran.
Jika hasilnya 1 (Overload) maka naikkan skala
Jika hasilnya digit dibelakang koma kurang akurat, maka turunkan skala.
Contoh pembacaan hasil :
Pd skala 2K hasilnya 1,76 itu artinya hambatan yg terukur adalah 1,76 K Ohm
Pd skala 2K hasilnya 0,378 itu artinya hambatan yg terukur adalah 0,378 K Ohm alias 378 Ohm. (KOhm ke Ohm dikali 1000)
Pd skala 20K hasilnya 1 , artinya object yg mau diukur melebihi skala 20K,maka naikan skala menjadi 200K, hasilnya menjadi 38,78 itu artinya hambatan yg terukur adalah sebesar 38,78 KOhm
Pada pengukuran tegangan PLN, maka skala dipindahkan ke bagian AC Volt (~) lalu skala ke 750 V.
Colok kabel merah dan hitam ke masing2 lobang stop kontak, bolak balik boleh. Namun hati2 takut ada kabel yg terkelupas, bisa tersengat listrik.
Hasil yg akan muncul mis: 216 artinya tegangan PLN tsb sebesar 216 Volt.
Jika memakai skala 200, maka hasilnya akan 1 pertanda over load alias melebihi skala 200 Volt tsb.
Menggunakan Multitester sebagai pengukur kapasitas Condensator
Kondensator (Capasitor) adalah suatu alat yang dapat menyimpan energi di dalam medan listrik, dengan cara mengumpulkan ketidakseimbangan internal dari muatan listrik. Kondensator memiliki satuan yang disebut Farad. Ditemukan oleh Michael Faraday (1791-1867). Kondensator kini juga dikenal sebagai "kapasitor", namun kata "kondensator" masih dipakai hingga saat ini. Pertama disebut oleh Alessandro Volta seorang ilmuwan Italia pada tahun 1782 (dari bahasa Itali condensatore), berkenaan dengan kemampuan alat untuk menyimpan suatu muatan listrik yang tinggi dibanding komponen lainnya. Kebanyakan bahasa dan negara yang tidak menggunakan bahasa Inggris masih mengacu pada perkataan bahasa Italia "condensatore", seperti bahasa Perancis condensateur, Indonesia dan Jerman Kondensator atau Spanyol Condensador.
· Kondensator diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung.
Lambang kondensator (mempunyai kutub positif dan negatif) pada skema elektronika.
· Sedangkan jenis yang satunya lagi kebanyakan nilai kapasitasnya lebih rendah, tidak mempunyai kutub positif atau negatif pada kakinya, kebanyakan berbentuk bulat pipih berwarna coklat, merah, hijau dan lainnya seperti tablet atau kancing baju yang sering disebut kapasitor (capacitor).
Lambang kapasitor (tidak mempunyai kutub) pada skema elektronika. Namun kebiasaan dan kondisi serta artikulasi bahasa setiap negara tergantung pada masyarakat yang lebih sering menyebutkannya. Kini kebiasaan orang tersebut hanya menyebutkan salah satu nama yang paling dominan digunakan atau lebih sering didengar. Pada masa kini, kondensator sering disebut kapasitor (capacitor) ataupun sebaliknya yang pada ilmu elektronika disingkat dengan huruf ©.
Satuan dalam kondensator disebut Farad. Satu Farad = 9 x 1011 cm² yang artinya luas permukaan kepingan tersebut menjadi 1 Farad sama dengan 106 mikroFarad (µF), jadi 1 µF = 9 x 105 cm².
Satuan-satuan sentimeter persegi (cm²) jarang sekali digunakan karena kurang praktis, satuan yang banyak digunakan adalah:
· 1 Farad = 1.000.000 µF (mikro Farad)
· 1 µF = 1.000.000 pF (piko Farad)
· 1 µF = 1.000 nF (nano Farad)
· 1 nF = 1.000 pF (piko Farad)
· 1 pF = 1.000 µµF (mikro-mikro Farad)
Langkah pengukuran :
1. Pilih Skala bagian F dan pilih skala yg sesuai.
2. maka nilai yg tampil adalah nilai kapasitas kondensator tsb dgn satuan Farad atau Mikro Farad (10 pangkat -6) atau Nano Farad (10 pangkat -9) atau Piko Farad (10 pangkat -12) Farad.
Menggunakan Multitester Digital sebagai Pengukur Jalur (Kontinuitas)
1. Pilih Skala Buzzer, yg ada icon Sound atau ada LED nya. Jika kabel tester Merah dan hitam ditempelkan lsg, maka Multitester akan berbunyi pertanda jalur OK. Tanpa hambatan (<50 Ohm).
2. Pilih object pengukuran. Misal akan mengukur jalur Power ON dari IC UEM kaki P7 ke Switch On off. Tempel salah satu kabel (bebas yg mana aja) ke kaki Switch ON Off, satu lagi ke kaki IC UEM P7 atau capasitor terdekatnya. Jika bunyi maka pertanda jalur bagus dan terhubung. Jika tdk bunyi, coba apakah sdh benar letak pengukurannya. Jika sdh, dipastikan jalur putus dan harus di jumper.
Menggunakan Multitester Digital sebagai pengukur arus rangkaian
1. Pindahkan kabel merah ke 20A. Dan kabel hitam tetap di COM (ground). Dipilih lobang 20A karena akan mengukur arus yg > 0,2 A.
Misalnya akan mengukur arus pengisian battere. Salah satu cara antara lain salah satu kabel charger dipotong. Dan masing2 kabel ditempelkan ke kabel merah & kabel hitam Multitester. Lakukan pengukuran saat ponsel dicharger. Misalnya nilai yg tertera 0,725 berarti arus pengisian sebesar 0,725 A alais 725 mA.
Atau mencabut Sekring (Fuse) lalu tempelkan msg2 kbl ke msg kutub sekring pd PCB. Lalu ukur hasilnya.
Mengukur Batere Lithium Original atau Palsu.
1. Kabel Merah tetap di 20A, kbl hitam di GND.
2. Skala tetap di 20A
3. Tempel kabel Merah di + batere
4. Tempel kbl hitam di - batere
5. lihat hasil yg muncul :
Jika secara refleks, menunjuk ke angka tertentu dan kembali ke Nol, pertanda Batere Lithium asli.
Jika hasilnya menunjuk ke angka tertentu, dan stabil. Pertanda Batere Lithium palsu, dan cept2 cabut kbl dari Batere. Karena Batere akan menjadi panas.. karena didalamya tdk ada rangkaian IC Pengontrolnya.
Untuk Batere lithium asli, walaupun kbl ditempel terus ke batere, tdk masalah...
Makanya sering ponsel panas atau bahkan meledak saat dicharging. Karena menggunakan Batere Lithium palsu. Yg tdk ada rangkaian IC pengontrolnya. Sehingga saat batere Penuh. Sensor BTEMP tdk bekerja. Maka batere yg telah penuh tsb akan terus terisi sehingga menjadi panas panas dan akhirnya dpt mengakibatkan kerusakanpada ponsel, atau bahkan bisa saja batere menjadi kembung da dpt meledak.
Oleh karen itu gunakan selalu batere yg asli Lithium yg mengandung IC Pengontrol short Circuit didalamnya.
Kondensator (Capasitor) adalah suatu alat yang dapat menyimpan energi di dalam medan listrik, dengan cara mengumpulkan ketidakseimbangan internal dari muatan listrik. Kondensator memiliki satuan yang disebut Farad. Ditemukan oleh Michael Faraday (1791-1867). Kondensator kini juga dikenal sebagai "kapasitor", namun kata "kondensator" masih dipakai hingga saat ini. Pertama disebut oleh Alessandro Volta seorang ilmuwan Italia pada tahun 1782 (dari bahasa Itali condensatore), berkenaan dengan kemampuan alat untuk menyimpan suatu muatan listrik yang tinggi dibanding komponen lainnya. Kebanyakan bahasa dan negara yang tidak menggunakan bahasa Inggris masih mengacu pada perkataan bahasa Italia "condensatore", seperti bahasa Perancis condensateur, Indonesia dan Jerman Kondensator atau Spanyol Condensador.
· Kondensator diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung.
Lambang kondensator (mempunyai kutub positif dan negatif) pada skema elektronika.
· Sedangkan jenis yang satunya lagi kebanyakan nilai kapasitasnya lebih rendah, tidak mempunyai kutub positif atau negatif pada kakinya, kebanyakan berbentuk bulat pipih berwarna coklat, merah, hijau dan lainnya seperti tablet atau kancing baju yang sering disebut kapasitor (capacitor).
Lambang kapasitor (tidak mempunyai kutub) pada skema elektronika. Namun kebiasaan dan kondisi serta artikulasi bahasa setiap negara tergantung pada masyarakat yang lebih sering menyebutkannya. Kini kebiasaan orang tersebut hanya menyebutkan salah satu nama yang paling dominan digunakan atau lebih sering didengar. Pada masa kini, kondensator sering disebut kapasitor (capacitor) ataupun sebaliknya yang pada ilmu elektronika disingkat dengan huruf ©.
Satuan dalam kondensator disebut Farad. Satu Farad = 9 x 1011 cm² yang artinya luas permukaan kepingan tersebut menjadi 1 Farad sama dengan 106 mikroFarad (µF), jadi 1 µF = 9 x 105 cm².
Satuan-satuan sentimeter persegi (cm²) jarang sekali digunakan karena kurang praktis, satuan yang banyak digunakan adalah:
· 1 Farad = 1.000.000 µF (mikro Farad)
· 1 µF = 1.000.000 pF (piko Farad)
· 1 µF = 1.000 nF (nano Farad)
· 1 nF = 1.000 pF (piko Farad)
· 1 pF = 1.000 µµF (mikro-mikro Farad)
Langkah pengukuran :
1. Pilih Skala bagian F dan pilih skala yg sesuai.
2. maka nilai yg tampil adalah nilai kapasitas kondensator tsb dgn satuan Farad atau Mikro Farad (10 pangkat -6) atau Nano Farad (10 pangkat -9) atau Piko Farad (10 pangkat -12) Farad.
Menggunakan Multitester Digital sebagai Pengukur Jalur (Kontinuitas)
1. Pilih Skala Buzzer, yg ada icon Sound atau ada LED nya. Jika kabel tester Merah dan hitam ditempelkan lsg, maka Multitester akan berbunyi pertanda jalur OK. Tanpa hambatan (<50 Ohm).
2. Pilih object pengukuran. Misal akan mengukur jalur Power ON dari IC UEM kaki P7 ke Switch On off. Tempel salah satu kabel (bebas yg mana aja) ke kaki Switch ON Off, satu lagi ke kaki IC UEM P7 atau capasitor terdekatnya. Jika bunyi maka pertanda jalur bagus dan terhubung. Jika tdk bunyi, coba apakah sdh benar letak pengukurannya. Jika sdh, dipastikan jalur putus dan harus di jumper.
Menggunakan Multitester Digital sebagai pengukur arus rangkaian
1. Pindahkan kabel merah ke 20A. Dan kabel hitam tetap di COM (ground). Dipilih lobang 20A karena akan mengukur arus yg > 0,2 A.
Misalnya akan mengukur arus pengisian battere. Salah satu cara antara lain salah satu kabel charger dipotong. Dan masing2 kabel ditempelkan ke kabel merah & kabel hitam Multitester. Lakukan pengukuran saat ponsel dicharger. Misalnya nilai yg tertera 0,725 berarti arus pengisian sebesar 0,725 A alais 725 mA.
Atau mencabut Sekring (Fuse) lalu tempelkan msg2 kbl ke msg kutub sekring pd PCB. Lalu ukur hasilnya.
Mengukur Batere Lithium Original atau Palsu.
1. Kabel Merah tetap di 20A, kbl hitam di GND.
2. Skala tetap di 20A
3. Tempel kabel Merah di + batere
4. Tempel kbl hitam di - batere
5. lihat hasil yg muncul :
Jika secara refleks, menunjuk ke angka tertentu dan kembali ke Nol, pertanda Batere Lithium asli.
Jika hasilnya menunjuk ke angka tertentu, dan stabil. Pertanda Batere Lithium palsu, dan cept2 cabut kbl dari Batere. Karena Batere akan menjadi panas.. karena didalamya tdk ada rangkaian IC Pengontrolnya.
Untuk Batere lithium asli, walaupun kbl ditempel terus ke batere, tdk masalah...
Makanya sering ponsel panas atau bahkan meledak saat dicharging. Karena menggunakan Batere Lithium palsu. Yg tdk ada rangkaian IC pengontrolnya. Sehingga saat batere Penuh. Sensor BTEMP tdk bekerja. Maka batere yg telah penuh tsb akan terus terisi sehingga menjadi panas panas dan akhirnya dpt mengakibatkan kerusakanpada ponsel, atau bahkan bisa saja batere menjadi kembung da dpt meledak.
Oleh karen itu gunakan selalu batere yg asli Lithium yg mengandung IC Pengontrol short Circuit didalamnya.
Cek Komponent dengan Multitester
1.IC PA (POWER AMPLIFIER)IC PA (POWER AMPLIFIER)
Untuk memeriksa kaki positif pada PA kita gunakan multitester pada kalibrasi X1, caranya:
Letakkan kabel merah (+) AVO di konektor baterai positif (+) pada papan pcb dan kabel hitam (-) AVO pada konetor baterai negatif (-), jarum akan bergerak. Pindahkan kabel merah dikonektor negatif baterai, dan kabel hitam pada konektor positif baterai, jarum akan diam ( takbergerak ). Ini menandakan bahwa jalur positif baterai ke IC PA dalam keadaan baik, namun bila analisa tidak seperti diatas maka jalur positif baterai ke IC PA terjadi hubungan singkat (short) atau putus.
2.IC POWER SUPPLY
Atur kalibrasi pada X1, letakkan kabel hitam (-) AVO pada konektor positif baterai PCB dan kabel merah (+) pada kaki positif ELCO yang berhubungan langsung dengan arus masuk ke IC P S , jarum akan bergerak berarti jalur dari positif baterai ke IC PS baik.
3.IC CHARGER
Atur kalibrasi pada DC10V, lalu hubungkan charger yang dialiri arus listrik kekonektor chager di ponsel.Lalu latakkan kabel merah (+) AVO pada konektor positif baterai dan kabel hitam (-) pada konektor negatif baterai, jarum akan menunjukkan nilai yang sesuai dengan tagangan yang ada pada baterai, berarti IC CHARGER dalam keadan baik.
4.IC INTERFACE
Atur kalibrasi pada X1, letakka kabel hitam (-) AVO pada konektor positif baterai, dan kabel merah (+) pada salah satu lampu, lampu akan menyala berarti IC INTERFACE dalam kondisi baik.
5.VIBRATOR
Atur kalibrasi padaX1 letakkan kabel hitam (-) pada konektor positif baterai dan kabel positif (+) pada salah satu kaki vibrator, apabila jaru bergerak berarti jalur positif vibrator dalam keadaan baik.
6.BUZZER
Atur kalibrasi pada X1, letakkan kabel hitam (-) padakonektor positif baterai dan kabel positif (+) pada salah satu kaki buzzer, jarum akan bergerak dan buzzer akan berbunyi,berarti jalur buzzer baik.
7.LAMPU LED
Atur kalibrasi pada X1 letakkan kabel hitam (-) padakonektor positif baterai, dan kabel merah (+) pada salah satu kaki lampu, lampu menyala berarti jalur lampu dalam keadaan baik.
8.ELCO
Atur kalibrasi pada x1, letakkan kabel hitam pada (-) pada konektor positif baterai, dan kabel merah (+) pada kaki positif ELCO yang berhubungan langsung ke positif baterai, jarum bergerak berarti jalur ke ELCO baik.
9.CARA MENGUKUR DENGAN MENGGUNAKAN MULTITESTER
A. Apabila pengukuran jalur/komponen kita menggunakan kalibrasi pada OHM METER (x1, x10, x100, x1K) dalam kondisi tanpa arus.
B. Apabila pengikuran Arus DC (baterai) kita harus menggunakan kalibrasi pada DC Volt (10V, 50V, 100V, 250V) dalam kondisi dialiri arus.
10. MENGUKUR FUSE (SEKRING) MUNGKIN RUSAK
Atur kalibrasi pada x1, letakkan kabel merah (+) pada salah satu kaki R fuse, dan kabe hitam pada kaki satunya lagi, jarum akan bergerak berarti fuse dalam keadaan baik.
1.IC PA (POWER AMPLIFIER)
Untuk memeriksa kaki positif pada PA kita gunakan multitester pada kalibrasi X1, caranya:
Letakkan kabel merah (+) AVO di konektor baterai positif (+) pada papan pcb dan kabel hitam (-) AVO pada konektor baterai negatif (-), jarum akan bergerak. Pindahkan kabel merah dikonektor negatif baterai, dan kabel hitam pada konektor positif baterai, jarum akan diam ( tak bergerak ). Ini menandakan bahwa jalur positif baterai ke IC PA dalam keadaan baik, namun bila analisa tidak seperti diatas maka jalur positif baterai ke IC PA terjadi hubungan singkat (short) atau putus.
================================================== ========================
4.IC INTERFACE
Atur kalibrasi pada X1, letakkan kabel hitam (-) AVO pada konektor positif baterai, dan kabel merah (+) pada salah satu lampu, lampu akan menyala berarti IC INTERFACE dalam kondisi baik.
================================================== ========================
Qo bisa seperti tersebut diatas ya Bos ???
utk No-1
Sepengetahuan Sy, pada ponsel umumnya terdapat capasitor nonpolar atau polar yg terhubung ke kaki (+) & (-) connector batere sehinga jika kita menghubungkan kabel AVO Meter ke kaki2x connector tsb secara langsung akan mengukur resistansi capasitor (yang dengan rumus elektronika akan diperoleh nilai kapasitansi dalam satuan farad).
Maka menurut saya hal diatas kurang tepat digunakan untuk mengukur/memeriksa baik-tidaknya jalur ke IC PA
utk No.4
IC interface disini maksudnya IC yg mana yach ? Maksudnya IC User Interface gitu ?
Menurut Sy hal yg diuraikan pd No.4 diatas juga kurang tepat, karena sepengetahuan saya pada ponsel terdapat beberapa (banyak) komponen yg saling berhubungan pada I/O & ke IC User Inteface yg membentuk suatu rangkaian elektronik.
AFTER ALL ...
utk singkatnya, secara umum mengenai pemeriksaan IC perlu kita garis bawahi disini, bahwa:
IC (Integrated Circuit) itu merupakan suatu rangkaian terpadu yg didalamnya terdapat banyak komponen2x sehingga sulit di ukur secara akurat oleh multitester (melalui pengukuran nilai resistansi) untuk memeriksa kondisinya masih baik atau 'nggak.
Selanjutnya utk pemeriksaan jalur ke komponen2x : Buzzer,speaker, Vibrator, Mic, Fuse,DST kita harus paham&mengerti schematic diagram pada ponsel yg kita periksa sehingga pemeriksaan jalur yang dilakukan lebih cermat & akurat (tidak mengukur komponen yang lain)
Sedangkan utk memeriksa baik-tidaknya komponen2x tsb (berdasarkan acuan nilai resistansi komponen), sebaiknya kita menghubungkan secara langsung kabel AVO meter ke kaki2x komponen sehingga hasil pengukuran resistansi yg diperoleh lebih cermat & akurat, dan akan jauh lebih baik jika pada saat pengukuran dilakukan, komponen2x tersebut dilepas dari papan rangkaian agar tidak terpengaruh resistansi komponen lain yang terhubung pada rangkaian.
Demikian tanggapan saya agar konsep kerja pemeriksaan komponen elektronika dengan Multimeter (AVO Meter) melalui pengukuran Nilai Resistansi, Arus dan Tegangan menjadi tidak salah kaprah.
1.IC PA (POWER AMPLIFIER)IC PA (POWER AMPLIFIER)
Untuk memeriksa kaki positif pada PA kita gunakan multitester pada kalibrasi X1, caranya:
Letakkan kabel merah (+) AVO di konektor baterai positif (+) pada papan pcb dan kabel hitam (-) AVO pada konetor baterai negatif (-), jarum akan bergerak. Pindahkan kabel merah dikonektor negatif baterai, dan kabel hitam pada konektor positif baterai, jarum akan diam ( takbergerak ). Ini menandakan bahwa jalur positif baterai ke IC PA dalam keadaan baik, namun bila analisa tidak seperti diatas maka jalur positif baterai ke IC PA terjadi hubungan singkat (short) atau putus.
2.IC POWER SUPPLY
Atur kalibrasi pada X1, letakkan kabel hitam (-) AVO pada konektor positif baterai PCB dan kabel merah (+) pada kaki positif ELCO yang berhubungan langsung dengan arus masuk ke IC P S , jarum akan bergerak berarti jalur dari positif baterai ke IC PS baik.
3.IC CHARGER
Atur kalibrasi pada DC10V, lalu hubungkan charger yang dialiri arus listrik kekonektor chager di ponsel.Lalu latakkan kabel merah (+) AVO pada konektor positif baterai dan kabel hitam (-) pada konektor negatif baterai, jarum akan menunjukkan nilai yang sesuai dengan tagangan yang ada pada baterai, berarti IC CHARGER dalam keadan baik.
4.IC INTERFACE
Atur kalibrasi pada X1, letakka kabel hitam (-) AVO pada konektor positif baterai, dan kabel merah (+) pada salah satu lampu, lampu akan menyala berarti IC INTERFACE dalam kondisi baik.
5.VIBRATOR
Atur kalibrasi padaX1 letakkan kabel hitam (-) pada konektor positif baterai dan kabel positif (+) pada salah satu kaki vibrator, apabila jaru bergerak berarti jalur positif vibrator dalam keadaan baik.
6.BUZZER
Atur kalibrasi pada X1, letakkan kabel hitam (-) padakonektor positif baterai dan kabel positif (+) pada salah satu kaki buzzer, jarum akan bergerak dan buzzer akan berbunyi,berarti jalur buzzer baik.
7.LAMPU LED
Atur kalibrasi pada X1 letakkan kabel hitam (-) padakonektor positif baterai, dan kabel merah (+) pada salah satu kaki lampu, lampu menyala berarti jalur lampu dalam keadaan baik.
8.ELCO
Atur kalibrasi pada x1, letakkan kabel hitam pada (-) pada konektor positif baterai, dan kabel merah (+) pada kaki positif ELCO yang berhubungan langsung ke positif baterai, jarum bergerak berarti jalur ke ELCO baik.
9.CARA MENGUKUR DENGAN MENGGUNAKAN MULTITESTER
A. Apabila pengukuran jalur/komponen kita menggunakan kalibrasi pada OHM METER (x1, x10, x100, x1K) dalam kondisi tanpa arus.
B. Apabila pengikuran Arus DC (baterai) kita harus menggunakan kalibrasi pada DC Volt (10V, 50V, 100V, 250V) dalam kondisi dialiri arus.
10. MENGUKUR FUSE (SEKRING) MUNGKIN RUSAK
Atur kalibrasi pada x1, letakkan kabel merah (+) pada salah satu kaki R fuse, dan kabe hitam pada kaki satunya lagi, jarum akan bergerak berarti fuse dalam keadaan baik.
1.IC PA (POWER AMPLIFIER)
Untuk memeriksa kaki positif pada PA kita gunakan multitester pada kalibrasi X1, caranya:
Letakkan kabel merah (+) AVO di konektor baterai positif (+) pada papan pcb dan kabel hitam (-) AVO pada konektor baterai negatif (-), jarum akan bergerak. Pindahkan kabel merah dikonektor negatif baterai, dan kabel hitam pada konektor positif baterai, jarum akan diam ( tak bergerak ). Ini menandakan bahwa jalur positif baterai ke IC PA dalam keadaan baik, namun bila analisa tidak seperti diatas maka jalur positif baterai ke IC PA terjadi hubungan singkat (short) atau putus.
================================================== ========================
4.IC INTERFACE
Atur kalibrasi pada X1, letakkan kabel hitam (-) AVO pada konektor positif baterai, dan kabel merah (+) pada salah satu lampu, lampu akan menyala berarti IC INTERFACE dalam kondisi baik.
================================================== ========================
Qo bisa seperti tersebut diatas ya Bos ???
utk No-1
Sepengetahuan Sy, pada ponsel umumnya terdapat capasitor nonpolar atau polar yg terhubung ke kaki (+) & (-) connector batere sehinga jika kita menghubungkan kabel AVO Meter ke kaki2x connector tsb secara langsung akan mengukur resistansi capasitor (yang dengan rumus elektronika akan diperoleh nilai kapasitansi dalam satuan farad).
Maka menurut saya hal diatas kurang tepat digunakan untuk mengukur/memeriksa baik-tidaknya jalur ke IC PA
utk No.4
IC interface disini maksudnya IC yg mana yach ? Maksudnya IC User Interface gitu ?
Menurut Sy hal yg diuraikan pd No.4 diatas juga kurang tepat, karena sepengetahuan saya pada ponsel terdapat beberapa (banyak) komponen yg saling berhubungan pada I/O & ke IC User Inteface yg membentuk suatu rangkaian elektronik.
AFTER ALL ...
utk singkatnya, secara umum mengenai pemeriksaan IC perlu kita garis bawahi disini, bahwa:
IC (Integrated Circuit) itu merupakan suatu rangkaian terpadu yg didalamnya terdapat banyak komponen2x sehingga sulit di ukur secara akurat oleh multitester (melalui pengukuran nilai resistansi) untuk memeriksa kondisinya masih baik atau 'nggak.
Selanjutnya utk pemeriksaan jalur ke komponen2x : Buzzer,speaker, Vibrator, Mic, Fuse,DST kita harus paham&mengerti schematic diagram pada ponsel yg kita periksa sehingga pemeriksaan jalur yang dilakukan lebih cermat & akurat (tidak mengukur komponen yang lain)
Sedangkan utk memeriksa baik-tidaknya komponen2x tsb (berdasarkan acuan nilai resistansi komponen), sebaiknya kita menghubungkan secara langsung kabel AVO meter ke kaki2x komponen sehingga hasil pengukuran resistansi yg diperoleh lebih cermat & akurat, dan akan jauh lebih baik jika pada saat pengukuran dilakukan, komponen2x tersebut dilepas dari papan rangkaian agar tidak terpengaruh resistansi komponen lain yang terhubung pada rangkaian.
Demikian tanggapan saya agar konsep kerja pemeriksaan komponen elektronika dengan Multimeter (AVO Meter) melalui pengukuran Nilai Resistansi, Arus dan Tegangan menjadi tidak salah kaprah.
Mendeteksi arus short/konslet pada hp bb5
Untuk ponsel bb5 new semisal 3110c dll yg menggunakan IC RF AHNE, menggunakan Processor RAPGSM v1.1 bukan RAP3G.
RAPGSmv1.1 ini termasuk dlm CMOS Processor (MOSFET) yg merupakan
rangkaian kombinasi Field Effect Transistor Vdd(Drain) sbg teg.
Positifnya dan Vss(source) sbg negatif.
Pada RAPGSM ini membutuhkan 2 jenis tegangan kerja sbb:
Tegangan Microprocessor VCore=1,4V
Tegangan Data Signal Processor VIO=1,8V
Pada RAPGSM ini terdapat 19 kaki yg memperoleh tegangan Positif Vddcore
1,4V(drain) dari TAHVO, dan 19 kaki tegangan negatif VssCore(source) ke
Ground.
Serta 11 kaki yg memperoleh tegangan VddIO 1,8V.
Nah dari hampir lima puluh kaki tegangan input (Vdd/Vss) untuk RAP tsb,
sering mengalami masalah short pada kaki2nya. Oleh karena itu
kemungkinan terbesar disebabkan oleh RAPGSM ini.
Namun bila
mau melakukan pengukuran lebih teliti short atau tidaknya pada RAPGSM
ini sulit bila dilakukan dengan cara suntik tegangan dan Heat feeling
(Meraba yg panas). Atau disebut inject tegangan (Memberi teg. kerja yg
sesuai, langsung dari Power Supply, bukan lagi dari IC Regulator
RETU& TAHVO tsb, dan melihat reaksi konsumsi arus pd Power Supply).
Mengapa? Dikarenakan dalam modul IC RAPGSM pada input Vdd/Vss terdapat
Protection Diode sbg Switching saat shorting. Sehingga pada RAP yg
short sendiripun tdk dirasakan panas, namun panas terjadi pada
Regulator yg memberikan tegangan(RETU/TAHVO). Sehingga bisa terjadi
salah deteksi, panas di RETU bukan berarti RETU yg short.
Adapun cara eliminasi untuk mengetahui komponen mana yg short sbb:
(cara Eliminasi adalah memutus tegangan terhadap salah satu komponen yg
dicurigai, lalu membandingkan arusnya kembali pada Power Supply.)
1. Eliminasi TAHVO
Cabut L2302, jika dicabut maka VCORE akan hilang. Cek kembali. Apakah
kondisi msh sama? jika ya pertanda tdk ada masalah dgn VCore utk RAP.
Jika panas sdh normal, 100% masalah dari RAPGSM (bagian Microprocessor nya).
Cabut L2301&L2306, jika dicabut input TAHVO dari VBat akan putus,
Rangkain Charging tdk bekerja. Cek kembali. Kondisi masih sama? jika ya
pertanda tdk ada masalah dgn TAHVO. Jika panas sdh normal, masalah dari
TAHVO.
2. Eliminasi PA
Cabut Z7520, maka teg. VBAT ke PA akan putus. Cek kembali. Jika konsumsi arus menjadi normal, maka 100% masalah pada PA.
3. Eliminasi IC RF (AHNE)
Cabut L7502, teg. VBAT ke AHNE akan putus, jika konsumsi arus menjadi
normal, maka 100% masalah pada AHNE. Jika arus tetap tinggi, masalah
bukan pada AHNE, pasang kembali L7502.
4. Eliminasi Bluetooth IC
Cabut L6077, maka teg. VBAT ke BT IC akan putus, jika arus menjadi normal, maka IC BT bermasalah.
5. Eliminasi Camera IC & Regulator
Cabut L3303, jika arus menjadi normal, maka masalah di Camera atau Camera IC(D3300),
Jika arus masih tinggi, cabut L3304, arus menjadi normal, maka 100% masalah di Regulator Camera(N3300)
Camera IC sering pula bermasalah short.
Untuk Bagian DSP dari RAPGSM yg mendapatkan teg. VIO. Cara Eliminasi
dengan mengangkat RAPGSM. kemudian melihat kembali reaksi arus pd PS,
atau meraba apakah RETU masih panas. Jika sdh normal, maka pertanda
RAPGSM bermasalah. Jika RETU msh panas/PS arusnya masih tinggi,
pertanda masalah bukan dari RAPGSM.
Sedangkan short pada
RAPGSM ada dua kemungkinan bisa dari kaki2 BGAnya yg menimbulkan short,
bisa pula dari modul RAPGSM itu sendiri.
Jika kaki2 BGA yg bermasalah, bisa diangkat cetak (Reball)
Namun jika setelah diReball, arus kembali melonjak, RETU Panas. Maka pertanda RAPGSM sdh rusak.
Sedangkan Shorting pada ponsel, ada 3 kategori:
1. Langsung short begitu pasang Batt/PS. (Arus pada PS langsung melonjak)
2. Short setelah menekan Switch on/off. (arus PS naik setelah menekan on/off)
3. Short saat melakukan panggilan/Transmit. (ARus naik tinggi saat melakukan calling)
Kondisi 1, paling mudah menebaknya. Periksa & Eliminasi komponen yg
langsung mendapatkan tegangan dari VBatt. Spt PA, RETU, TAHVO, RF IC,
BT IC, dsb..
Kondisi 2. Agak sulit pendeteksiannya. Periksa
& Eliminasi komponen yg mendapatkan tegangan dari
Regulator(RETU,TAHVO,Camera Regulator,LED Regulator, dll)
Kondisi 3. Umumnya kerusakan dari PA.. Karena PA bekerja saat Call in/Out.
Untuk ponsel bb5 new semisal 3110c dll yg menggunakan IC RF AHNE, menggunakan Processor RAPGSM v1.1 bukan RAP3G.
RAPGSmv1.1 ini termasuk dlm CMOS Processor (MOSFET) yg merupakan
rangkaian kombinasi Field Effect Transistor Vdd(Drain) sbg teg.
Positifnya dan Vss(source) sbg negatif.
Pada RAPGSM ini membutuhkan 2 jenis tegangan kerja sbb:
Tegangan Microprocessor VCore=1,4V
Tegangan Data Signal Processor VIO=1,8V
Pada RAPGSM ini terdapat 19 kaki yg memperoleh tegangan Positif Vddcore
1,4V(drain) dari TAHVO, dan 19 kaki tegangan negatif VssCore(source) ke
Ground.
Serta 11 kaki yg memperoleh tegangan VddIO 1,8V.
Nah dari hampir lima puluh kaki tegangan input (Vdd/Vss) untuk RAP tsb,
sering mengalami masalah short pada kaki2nya. Oleh karena itu
kemungkinan terbesar disebabkan oleh RAPGSM ini.
Namun bila
mau melakukan pengukuran lebih teliti short atau tidaknya pada RAPGSM
ini sulit bila dilakukan dengan cara suntik tegangan dan Heat feeling
(Meraba yg panas). Atau disebut inject tegangan (Memberi teg. kerja yg
sesuai, langsung dari Power Supply, bukan lagi dari IC Regulator
RETU& TAHVO tsb, dan melihat reaksi konsumsi arus pd Power Supply).
Mengapa? Dikarenakan dalam modul IC RAPGSM pada input Vdd/Vss terdapat
Protection Diode sbg Switching saat shorting. Sehingga pada RAP yg
short sendiripun tdk dirasakan panas, namun panas terjadi pada
Regulator yg memberikan tegangan(RETU/TAHVO). Sehingga bisa terjadi
salah deteksi, panas di RETU bukan berarti RETU yg short.
Adapun cara eliminasi untuk mengetahui komponen mana yg short sbb:
(cara Eliminasi adalah memutus tegangan terhadap salah satu komponen yg
dicurigai, lalu membandingkan arusnya kembali pada Power Supply.)
1. Eliminasi TAHVO
Cabut L2302, jika dicabut maka VCORE akan hilang. Cek kembali. Apakah
kondisi msh sama? jika ya pertanda tdk ada masalah dgn VCore utk RAP.
Jika panas sdh normal, 100% masalah dari RAPGSM (bagian Microprocessor nya).
Cabut L2301&L2306, jika dicabut input TAHVO dari VBat akan putus,
Rangkain Charging tdk bekerja. Cek kembali. Kondisi masih sama? jika ya
pertanda tdk ada masalah dgn TAHVO. Jika panas sdh normal, masalah dari
TAHVO.
2. Eliminasi PA
Cabut Z7520, maka teg. VBAT ke PA akan putus. Cek kembali. Jika konsumsi arus menjadi normal, maka 100% masalah pada PA.
3. Eliminasi IC RF (AHNE)
Cabut L7502, teg. VBAT ke AHNE akan putus, jika konsumsi arus menjadi
normal, maka 100% masalah pada AHNE. Jika arus tetap tinggi, masalah
bukan pada AHNE, pasang kembali L7502.
4. Eliminasi Bluetooth IC
Cabut L6077, maka teg. VBAT ke BT IC akan putus, jika arus menjadi normal, maka IC BT bermasalah.
5. Eliminasi Camera IC & Regulator
Cabut L3303, jika arus menjadi normal, maka masalah di Camera atau Camera IC(D3300),
Jika arus masih tinggi, cabut L3304, arus menjadi normal, maka 100% masalah di Regulator Camera(N3300)
Camera IC sering pula bermasalah short.
Untuk Bagian DSP dari RAPGSM yg mendapatkan teg. VIO. Cara Eliminasi
dengan mengangkat RAPGSM. kemudian melihat kembali reaksi arus pd PS,
atau meraba apakah RETU masih panas. Jika sdh normal, maka pertanda
RAPGSM bermasalah. Jika RETU msh panas/PS arusnya masih tinggi,
pertanda masalah bukan dari RAPGSM.
Sedangkan short pada
RAPGSM ada dua kemungkinan bisa dari kaki2 BGAnya yg menimbulkan short,
bisa pula dari modul RAPGSM itu sendiri.
Jika kaki2 BGA yg bermasalah, bisa diangkat cetak (Reball)
Namun jika setelah diReball, arus kembali melonjak, RETU Panas. Maka pertanda RAPGSM sdh rusak.
Sedangkan Shorting pada ponsel, ada 3 kategori:
1. Langsung short begitu pasang Batt/PS. (Arus pada PS langsung melonjak)
2. Short setelah menekan Switch on/off. (arus PS naik setelah menekan on/off)
3. Short saat melakukan panggilan/Transmit. (ARus naik tinggi saat melakukan calling)
Kondisi 1, paling mudah menebaknya. Periksa & Eliminasi komponen yg
langsung mendapatkan tegangan dari VBatt. Spt PA, RETU, TAHVO, RF IC,
BT IC, dsb..
Kondisi 2. Agak sulit pendeteksiannya. Periksa
& Eliminasi komponen yg mendapatkan tegangan dari
Regulator(RETU,TAHVO,Camera Regulator,LED Regulator, dll)
Kondisi 3. Umumnya kerusakan dari PA.. Karena PA bekerja saat Call in/Out.
KAMUS HANDPHONE
( Singkatan dan Fungsi )
DIAGRAM BLOCK = Diagram Kotak
Diagram berupa gabungan sejumlah block (kotak) bersama-sama untuk membentuk sistem an lengkap, dengan melukiskan bagian-bagian/komponen-komponen, hubungan-hubungan rangkaian, cara kerja dan sebagainya. Diagram block berfungsi untuk menganalisa fungs rangkaian elektronik dengan mengambil prinsip dasar ‘membaca’ diagram, sehingga kita lebih mudah memahami rangkaian yang rumit, sebagaimana fungsi diagram-diagram lain.
NMP = Nokia Mobile Products
BATTERY CHARGER = Guna Charger Battery untuk jalan aliran listrik dari adaptor ke Baterry.
DUPLEXER : Berguna untuk RX (Menerima sinyal) dan untuk TX ( Mengirimkan sinyal).
PA = (Power Amplifier)
Amplifier atau penguat kadang juga disebut versteker. Suatu peralatan (sirkit) yang diberi catu daya DC yang berfungsi untuk memperkuat daya, dari daya gelombang lemah menjadi daya gelombang yang kuat atau ang lebih kuat atau hal mana masukan tegangan, arus, atau dayanya, dibuat menjadi lebih kuat amplitudo keluarnya.
C CONT = sebagai tempat pengatur tegangan aliran listrik ke semua komponen - komponen.
COBBA = Guna sebagai penterjemah signal analog menjadi digital.
HAGAR = Sebagai tempat perubahan lebar frekuensi.
BANDWIDTH = (Lebar jalur)
Dalam sistem radio pemancar adalah daerah frekuensi di mana tegangan sinyalnya boleh kurang dari nilai maksimum yang ditentukan atau keseluruhan dari jalur yang dirambati oleh sinyal yang mengandung modulasi.
CRYSTAL = Guna untuk menstabilkan tegangan listrik.
FLASH = Guna sebagai penterjemah bahasa.
SRAM = Guna sebagai tempat penyimpanan data sementara.
LCD = ( Liquid Cristal Display ) Menampilkan status
MICROPHONE = menerima suara ( analog ) penelepon.
SIM = Guna Sebagai tempat kartu Sim
PCB = ( Printed Circuit Board ) Papan yang berguna sebagai tempat komponen-komponen ( Ic, Pa, Lcd ).
E EPROM = guna sebagai tempat data permanen.
LED = Lampu.
VCTCX0 = Tempat pengiriman aliran listrik ke semua komponen-komponen.
BUZZER = Tempat mengeluarkan nada dering.
VIBRATOR = Alat untuk mengeluarkan nada Getar.
( Singkatan dan Fungsi )
DIAGRAM BLOCK = Diagram Kotak
Diagram berupa gabungan sejumlah block (kotak) bersama-sama untuk membentuk sistem an lengkap, dengan melukiskan bagian-bagian/komponen-komponen, hubungan-hubungan rangkaian, cara kerja dan sebagainya. Diagram block berfungsi untuk menganalisa fungs rangkaian elektronik dengan mengambil prinsip dasar ‘membaca’ diagram, sehingga kita lebih mudah memahami rangkaian yang rumit, sebagaimana fungsi diagram-diagram lain.
NMP = Nokia Mobile Products
BATTERY CHARGER = Guna Charger Battery untuk jalan aliran listrik dari adaptor ke Baterry.
DUPLEXER : Berguna untuk RX (Menerima sinyal) dan untuk TX ( Mengirimkan sinyal).
PA = (Power Amplifier)
Amplifier atau penguat kadang juga disebut versteker. Suatu peralatan (sirkit) yang diberi catu daya DC yang berfungsi untuk memperkuat daya, dari daya gelombang lemah menjadi daya gelombang yang kuat atau ang lebih kuat atau hal mana masukan tegangan, arus, atau dayanya, dibuat menjadi lebih kuat amplitudo keluarnya.
C CONT = sebagai tempat pengatur tegangan aliran listrik ke semua komponen - komponen.
COBBA = Guna sebagai penterjemah signal analog menjadi digital.
HAGAR = Sebagai tempat perubahan lebar frekuensi.
BANDWIDTH = (Lebar jalur)
Dalam sistem radio pemancar adalah daerah frekuensi di mana tegangan sinyalnya boleh kurang dari nilai maksimum yang ditentukan atau keseluruhan dari jalur yang dirambati oleh sinyal yang mengandung modulasi.
CRYSTAL = Guna untuk menstabilkan tegangan listrik.
FLASH = Guna sebagai penterjemah bahasa.
SRAM = Guna sebagai tempat penyimpanan data sementara.
LCD = ( Liquid Cristal Display ) Menampilkan status
MICROPHONE = menerima suara ( analog ) penelepon.
SIM = Guna Sebagai tempat kartu Sim
PCB = ( Printed Circuit Board ) Papan yang berguna sebagai tempat komponen-komponen ( Ic, Pa, Lcd ).
E EPROM = guna sebagai tempat data permanen.
LED = Lampu.
VCTCX0 = Tempat pengiriman aliran listrik ke semua komponen-komponen.
BUZZER = Tempat mengeluarkan nada dering.
VIBRATOR = Alat untuk mengeluarkan nada Getar.
dari berbagai sumber
sementara ini dulu posting kali ini,semoga bermanfaat!
samapai ketemu lagi!!!
WASSALAMU 'ALAIKU,,,
No comments:
Post a Comment